Ôn tập chuẩn bị thi vào lớp 10 theo chủ đề môn Toán

doc28 trang | Chia sẻ: huu1989 | Lượt xem: 997 | Lượt tải: 0download
Bạn đang xem trước 20 trang mẫu tài liệu Ôn tập chuẩn bị thi vào lớp 10 theo chủ đề môn Toán, để tải tài liệu gốc về máy bạn click vào nút DOWNLOAD ở trên
Mục lục
Phần I: đại số
Chủ đề 1: Căn thức – Biến đổi căn thức.
Dạng 1: Tìm điều kiện để biểu thức có chứa căn thức có nghĩa.
Bài 1: Tìm x để các biểu thức sau có nghĩa.( Tìm ĐKXĐ của các biểu thức sau).
Dạng 2: Biến đổi đơn giản căn thức.
Bài 1: Đưa một thừa số vào trong dấu căn.
Bài 2: Thực hiện phép tính.
Bài 3: Thực hiện phép tính.
Bài 4: Thực hiện phép tính.
Bài 5: Rút gọn các biểu thức sau:
Bài 6: Rút gọn biểu thức:
Bài 7: Rút gọn biểu thức sau:
Bài 8: Tính giá trị của biểu thức
Dạng 3: Bài toán tổng hợp kiến thức và kỹ năng tính toán.
Bài 1: Cho biểu thức 
a) Rút gọn P.
b) Tính giá trị của P nếu x = 4(2 - ).
c) Tính giá trị nhỏ nhất của P.
Bài 2: Xét biểu thức 
a) Rút gọn A.
b) Biết a > 1, hãy so sánh A với .
c) Tìm a để A = 2.
d) Tìm giá trị nhỏ nhất của A.
Bài 3: Cho biểu thức 
a) Rút gọn biểu thức C.
b) Tính giá trị của C với .
c) Tính giá trị của x để 
Bài 4: Cho biểu thức 
a) Rút gọn M.
b) Tính giá trị M nếu 
c) Tìm điều kiện của a, b để M < 1.
Bài 5: Xét biểu thức 
a) Rút gọn P.
b) Chứng minh rằng nếu 0 0.
c) Tìm giá trị lơn nhất của P.
Bài 6: Xét biểu thức 
a) Rút gọn Q.
b) Tìm các giá trị của x để Q < 1.
c) Tìm các giá trị nguyên của x để giá trị tương ứng của Q cũng là số nguyên.
Bài 7: Xét biểu thức 
a) Rút gọn H.
b) Chứng minh H ≥ 0.
c) So sánh H với .
Bài 8: Xét biểu thức 
a) Rút gọn A.
b) Tìm các giá trị của a sao cho A > 1.
c) Tính các giá trị của A nếu .
Bài 9: Xét biểu thức 
a) Rút gọn M.
b) Tìm các giá trị nguyên của x để giá trị tương ứng của M cũng là số nguyên.
Bài 10: Xét biểu thức 
a) Rút gọn P.
b) Tìm các giá trị của x sao cho 
c) So sánh P với .
Chủ đề 2: Phương trình bậc hai và định lí Viét.
Dạng 1: Giải phương trình bậc hai.
Bài 1: Giải các phương trình
1) x2 – 6x + 14 = 0 ;	2) 4x2 – 8x + 3 = 0 ;
3) 3x2 + 5x + 2 = 0 ;	4) -30x2 + 30x – 7,5 = 0 ;
5) x2 – 4x + 2 = 0 ;	6) x2 – 2x – 2 = 0 ;
7) x2 + 2x + 4 = 3(x + ) ; 	8) 2x2 + x + 1 = (x + 1) ;
9) x2 – 2( - 1)x - 2 = 0.
Bài 2: Giải các phương trình sau bằng cách nhẩm nghiệm:
1) 3x2 – 11x + 8 = 0 ; 	2) 5x2 – 17x + 12 = 0 ;
3) x2 – (1 + )x + = 0 ;	4) (1 - )x2 – 2(1 + )x + 1 + 3 = 0 ;
5) 3x2 – 19x – 22 = 0 ;	6) 5x2 + 24x + 19 = 0 ;
7) ( + 1)x2 + 2x + - 1 = 0 ;	8) x2 – 11x + 30 = 0 ;
9) x2 – 12x + 27 = 0 ;	10) x2 – 10x + 21 = 0.
Dạng 2: Chứng minh phương trình có nghiệm, vô nghiệm.
Bài 1: Chứng minh rằng các phương trình sau luôn có nghiệm.
1) x2 – 2(m - 1)x – 3 – m = 0 ; 	2) x2 + (m + 1)x + m = 0 ;
3) x2 – (2m – 3)x + m2 – 3m = 0 ;	4) x2 + 2(m + 2)x – 4m – 12 = 0 ;
5) x2 – (2m + 3)x + m2 + 3m + 2 = 0 ;	6) x2 – 2x – (m – 1)(m – 3) = 0 ;
7) x2 – 2mx – m2 – 1 = 0 ; 	8) (m + 1)x2 – 2(2m – 1)x – 3 + m = 0 
9) ax2 + (ab + 1)x + b = 0.
Bài 2: 
a) Chứng minh rằng với a, b , c là các số thực thì phương trình sau luôn có nghiệm:
(x – a)(x – b) + (x – b)(x – c) + (x – c)(x – a) = 0
b) Chứng minh rằng với ba số thức a, b , c phân biệt thì phương trình sau có hai nghiệm phân biết: 
c) Chứng minh rằng phương trình: c2x2 + (a2 – b2 – c2)x + b2 = 0 vô nghiệm với a, b, c là độ dài ba cạnh của một tam giác.
d) Chứng minh rằng phương trình bậc hai: 
(a + b)2x2 – (a – b)(a2 – b2)x – 2ab(a2 + b2) = 0 luôn có hai nghiệm phân biệt.
Bài 3: 
a) Chứng minh rằng ít nhất một trong các phương trình bậc hai sau đây có nghiệm:
ax2 + 2bx + c = 0 (1)
bx2 + 2cx + a = 0 (2)
cx2 + 2ax + b = 0 (3)
b) Cho bốn phương trình (ẩn x) sau:
x2 + 2ax + 4b2 = 0 (1)
x2 - 2bx + 4a2 = 0 (2)
x2 - 4ax + b2 = 0 (3)
x2 + 4bx + a2 = 0 (4)
Chứng minh rằng trong các phương trình trên có ít nhất 2 phương trình có nghiệm.
c) Cho 3 phương trình (ẩn x sau):
với a, b, c là các số dương cho trước.
Chứng minh rằng trong các phương trình trên có ít nhất một phương trình có nghiệm.
Bài 4: 
a) Cho phương trình ax2 + bx + c = 0.
Biết a ≠ 0 và 5a + 4b + 6c = 0, chứng minh rằng phương trình đã cho có hai nghiệm.
b) Chứng minh rằng phương trình ax2 + bx + c = 0 ( a ≠ 0) có hai nghiệm nếu một trong hai điều kiện sau được thoả mãn:
a(a + 2b + 4c) < 0 ;
5a + 3b + 2c = 0. 
Dạng 3: Tính giá trị của biểu thức đối xứng, lập phương trình bậc hai nhờ nghiệm của phương trình bậc hai cho trước.
Bài 1: Gọi x1 ; x2 là các nghiệm của phương trình: x2 – 3x – 7 = 0.
Tính:
Lập phương trình bậc hai có các nghiệm là .
Bài 2: Gọi x1 ; x2 là hai nghiệm của phương trình: 5x2 – 3x – 1 = 0. Không giải phương trình, tính giá trị của các biểu thức sau:
Bài 3:
a) Gọi p và q là nghiệm của phương trình bậc hai: 3x2 + 7x + 4 = 0. Không giải phương trình hãy thành lập phương trình bậc hai với hệ số bằng số mà các nghiệm của nó là .
b) Lập phương trình bậc hai có 2 nghiệm là .
Bài 4: Cho phương trình x2 – 2(m -1)x – m = 0.
a) Chứng minh rằng phương trình luôn luôn có hai nghiệm x1 ; x2 với mọi m.
b) Với m ≠ 0, lập phương trình ẩn y thoả mãn .
Bài 5: Không giải phương trình 3x2 + 5x – 6 = 0. Hãy tính giá trị các biểu thức sau:
Bài 6: Cho phương trình 2x2 – 4x – 10 = 0 có hai nghiệm x1 ; x2. Không giải phương trình hãy thiết lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn: y1 = 2x1 – x2 ; y2 = 2x2 – x1
Bài 7: Cho phương trình 2x2 – 3x – 1 = 0 có hai nghiệm x1 ; x2. Hãy thiết lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn:
Bài 8: Cho phương trình x2 + x – 1 = 0 có hai nghiệm x1 ; x2. Hãy thiết lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn:
Bài 9: Cho phương trình 2x2 + 4ax – a = 0 (a tham số, a ≠ 0) có hai nghiệm x1 ; x2. Hãy lập phương trình ẩn y có hai nghiệm y1 ; y2 thoả mãn:
Dạng 4: Tìm điều kiện của tham số để phương trình có nghiệm, có nghiệm kép, vô nghiệm.
Bài 1: 
a) Cho phương trình (m – 1)x2 + 2(m – 1)x – m = 0 (ẩn x).
Xác định m để phương trình có nghiệm kép. Tính nghiệm kép này.
b) Cho phương trình (2m – 1)x2 – 2(m + 4)x + 5m + 2 = 0. 
Tìm m để phương trình có nghiệm.
Cho phương trình: (m – 1)x2 – 2mx + m – 4 = 0.
Tìm điều kiện của m để phương trình có nghiệm.
Tìm điều kiện của m để phương trình có nghiệm kép. Tính nghiệm kép đó.
Cho phương trình: (a – 3)x2 – 2(a – 1)x + a – 5 = 0.
Tìm a để phương trình có hai nghiệm phân biệt.
Bài 2:
Cho phương trình: . 
Xác định m để phương trình có ít nhất một nghiệm.
Cho phương trình: (m2 + m – 2)(x2 + 4)2 – 4(2m + 1)x(x2 + 4) + 16x2 = 0. Xác định m để phương trình có ít nhất một nghiệm.
Dạng 5: Xác định tham số để các nghiệm của phương trình ax2 + bx + c = 0 thoả mãn điều kiện cho trước.
Bài 1: Cho phương trình: x2 – 2(m + 1)x + 4m = 0
Xác định m để phương trình có nghiệm kép. Tìm nghiệm kép đó.
Xác định m để phương trình có một nghiệm bằng 4. Tính nghiệm còn lại.
Với điều kiện nào của m thì phương trình có hai nghiệm cùng dấu (trái dấu)
Với điều kiện nào của m thì phương trình có hai nghiệm cùng dương (cùng âm).
Định m để phương trình có hai nghiệm sao cho nghiệm này gấp đôi nghiệm kia.
Định m để phương trình có hai nghiệm x1 ; x2 thoả mãn 2x1 – x2 = - 2.
Định m để phương trình có hai nghiệm x1 ; x2 sao cho A = 2x12 + 2x22 – x1x2 nhận giá trị nhỏ nhất.
Bài 2: Định m để phương trình có nghiệm thoả mãn hệ thức đã chỉ ra:
a) (m + 1)x2 – 2(m + 1)x + m – 3 = 0 ;	(4x1 + 1)(4x2 + 1) = 18
b) mx2 – (m – 4)x + 2m = 0 ;	2(x12 + x22) = 5x1x2
c) (m – 1)x2 – 2mx + m + 1 = 0 ;	4(x12 + x22) = 5x12x22
d) x2 – (2m + 1)x + m2 + 2 = 0 ;	3x1x2 – 5(x1 + x2) + 7 = 0.
Bài 3: Định m để phương trình có nghiệm thoả mãn hệ thức đã chỉ ra:
a) x2 + 2mx – 3m – 2 = 0 ;	2x1 – 3x2 = 1
b) x2 – 4mx + 4m2 – m = 0 ; 	x1 = 3x2
c) mx2 + 2mx + m – 4 = 0 ; 	2x1 + x2 + 1 = 0
d) x2 – (3m – 1)x + 2m2 – m = 0 ;	x1 = x22
e) x2 + (2m – 8)x + 8m3 = 0 ;	x1 = x22
f) x2 – 4x + m2 + 3m = 0 ; 	x12 + x2 = 6.
Bài 4: 
Cho phươnmg trình: (m + 2)x2 – (2m – 1)x – 3 + m = 0. Tìm điều kiện của m để phương trình có hai nghiệm phân biệt x1 ; x2 sao cho nghiệm này gấp đôi nghiệm kia.
Chư phương trình bậc hai: x2 – mx + m – 1 = 0. Tìm m để phương trình có hai nghiệm x1 ; x2 sao cho biểu thức đạt giá trị lớn nhất. Tìm giá trị lớn nhất đó.
Định m để hiệu hai nghiệm của phương trình sau đây bằng 2.
mx2 – (m + 3)x + 2m + 1 = 0.
 Bài 5: Cho phương trình: ax2 + bx + c = 0 (a ≠ 0).
Chứng minh rằng điều kiện cần và đủ để phương trình có hai nghiệm mà nghiệm này gấp đôi nghiệm kia là 9ac = 2b2.
Bài 6: Cho phương trình bậc hai: ax2 + bx + c = 0 (a ≠ 0). Chứng minh rằng điều kiện cần và đủ để phương trình có hai nghiệm mà nghiệm này gấp k lần nghiệm kia (k > 0) là :
kb2 = (k + 1)2.ac
Dạng 6: So sánh nghiệm của phương trình bậc hai với một số.
Bài 1:
Cho phương trình x2 – (2m – 3)x + m2 – 3m = 0. Xác định m để phương trình có hai nghiệm x1 ; x2 thoả mãn 1 < x1 < x2 < 6.
Cho phương trình 2x2 + (2m – 1)x + m – 1 = 0. Xác định m để phương trình có hai nghiệm phân biệt x1 ; x2 thoả mãn: - 1 < x1 < x2 < 1.
Bài 2: Cho f(x) = x2 – 2(m + 2)x + 6m + 1.
Chứng minh rằng phương trình f(x) = 0 có nghiệm với mọi m.
Đặt x = t + 2. Tính f(x) theo t, từ đó tìm điều kiện đối với m để phương trình f(x) = 0 có hai nghiệm lớn hơn 2.
Bài 3: Cho phương trình bậc hai: x2 + 2(a + 3)x + 4(a + 3) = 0.
Với giá trị nào của tham số a, phương trình có nghiệm kép. Tính các nghiệm kép.
Xác định a để phương trình có hai nghiệm phân biệt lớn hơn – 1.
Bài 4: Cho phương trình: x2 + 2(m – 1)x – (m + 1) = 0.
Tìm giá trị của m để phương trình có một nghiệm nhỏ hơn 1 và một nghiệm lớn hơn 1.
Tìm giá trị của m để phương trình có hai nghiệm nhỏ hơn 2.
Bài 5: Tìm m để phương trình: x2 – mx + m = 0 có nghiệm thoả mãn x1 ≤ - 2 ≤ x2. 
Dạng 7: Tìm hệ thức liên hệ giữa hai nghiệm của phương trình bậc hai không phụ thuộc tham số.
Bài 1: 
Cho phương trình: x2 – mx + 2m – 3 = 0. Tìm hệ thức liên hệ giữa hai nghiệm của phương trình không phụ thuộc vào tham số m.
Cho phương trình bậc hai: (m – 2)x2 – 2(m + 2)x + 2(m – 1) = 0. Khi phương trình có nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m.
Cho phương trình: 8x2 – 4(m – 2)x + m(m – 4) = 0. Định m để phương trình có hai nghiệm x1 ; x2. Tìm hệ thức giữa hai nghiệm độc lập với m, suy ra vị trí của các nghiệm đối với hai số – 1 và 1.
Bài 2: Cho phương trình bậc hai: (m – 1)2x2 – (m – 1)(m + 2)x + m = 0. Khi phương trình có nghiệm, hãy tìm một hệ thức giữa các nghiệm không phụ thuộc vào tham số m.
Bài 3: Cho phương trình: x2 – 2mx – m2 – 1 = 0.
Chứng minh rằng phương trình luôn có hai nghiệm x1 , x2 với mọi m.
Tìm biểu thức liên hệ giữa x1 ; x2 không phụ thuộc vào m.
Tìm m để phương trình có hai nghiệm x1 ; x2 thoả mãn: .
Bài 4: Cho phương trình: (m – 1)x2 – 2(m + 1)x + m = 0.
Giải và biện luận phương trình theo m.
Khi phương trình có hai nghiệm phân biệt x1 ; x2:
Tìm một hệ thức giữa x1 ; x2 độc lập với m.
Tìm m sao cho |x1 – x2| ≥ 2.
Bài 5: Cho phương trình (m – 4)x2 – 2(m – 2)x + m – 1 = 0. Chứng minh rằng nếu phương trình có hai nghiệm x1 ; x2 thì: 4x1x2 – 3(x1 + x2) + 2 = 0.
Dạng 8: Mối quan hệ giữa các nghiệm của hai phương trình bậc hai.
Kiến thức cần nhớ:
1/ Định giá trị của tham số để phương trình này có một nghiệm bằng k (k ≠ 0) lần một nghiệm của phương trình kia:
Xét hai phương trình: 
ax2 + bx + c = 0 (1)
a’x2 + b’x + c’ = 0 (2)
trong đó các hệ số a, b, c, a’, b’, c’ phụ thuộc vào tham số m.
Định m để sao cho phương trình (2) có một nghiệm bằng k (k ≠ 0) lần một nghiệm của phương trình (1), ta có thể làm như sau:
Giả sử x0 là nghiệm của phương trình (1) thì kx0 là một nghiệm của phương trình (2), suy ra hệ phương trình:
Giải hệ phương trình trên bằng phương pháp thế hoặc cộng đại số để tìm m.
Thay các giá trị m vừa tìm được vào hai phương trình (1) và (2) để kiểm tra lại.
2/ Định giá trị của tham số m để hai phương trình bậc hai tương đương với nhau.
Xét hai phương trình: 
ax2 + bx + c = 0 (a ≠ 0) (3)
a’x2 + b’x + c’ = 0 (a’ ≠ 0) (4)
Hai phương trình (3) và (4) tương đương với nhau khi và chỉ khi hai phương trình có cùng 1 tập nghiệm (kể cả tập nghiệm là rỗng).
Do đó, muỗn xác định giá trị của tham số để hai phương trình bậc hai tương đương với nhau ta xét hai trường hợp sau: 
Trường hợp cả hai phương trinhg cuùng vô nghiệm, tức là:
Giải hệ trên ta tịm được giá trị của tham số.
Trường hợp cả hai phương trình đều có nghiệm, ta giải hệ sau:
Chú ý: Bằng cách đặt y = x2 hệ phương trình (*) có thể đưa về hệ phương trình bậc nhất 2 ẩn như sau:
Để giải quyết tiếp bài toán, ta làm như sau:
Tìm điều kiện để hệ có nghiệm rồi tính nghiệm (x ; y) theo m.
Tìm m thoả mãn y = x2.
Kiểm tra lại kết quả.
Bài 1: Tìm m để hai phương trình sau có nghiệm chung:
2x2 – (3m + 2)x + 12 = 0
4x2 – (9m – 2)x + 36 = 0
Bài 2: Với giá trị nào của m thì hai phương trình sau có nghiệm chung. Tìm nghiệm chung đó:
a) 2x2 + (3m + 1)x – 9 = 0; 	6x2 + (7m – 1)x – 19 = 0.
b) 2x2 + mx – 1 = 0; 	mx2 – x + 2 = 0.
c) x2 – mx + 2m + 1 = 0; 	mx2 – (2m + 1)x – 1 = 0.
Bài 3: Xét các phương trình sau:
ax2 + bx + c = 0 (1)
cx2 + bx + a = 0 (2)
Tìm hệ thức giữa a, b, c là điều kiện cần và đủ để hai phương trình trên có một nghiệm chung duy nhất.
Bài 4: Cho hai phương trình:
x2 – 2mx + 4m = 0 (1)
x2 – mx + 10m = 0 (2)
Tìm các giá trị của tham số m để phương trình (2) có một nghiệm bằng hai lần một nghiệm của phương trình (1).
Bài 5: Cho hai phương trình:
x2 + x + a = 0
x2 + ax + 1 = 0
Tìm các giá trị của a để cho hai phương trình trên có ít nhất một nghiệm chung.
Với những giá trị nào của a thì hai phương trình trên tương đương.
Bài 6: Cho hai phương trình:
x2 + mx + 2 = 0 (1)
x2 + 2x + m = 0 (2)
Định m để hai phương trình có ít nhất một nghiệm chung.
Định m để hai phương trình tương đương.
Xác định m để phương trình (x2 + mx + 2)(x2 + 2x + m) = 0 có 4 nghiệm phân biệt
Bài 7: Cho các phương trình: 
x2 – 5x + k = 0 (1)
x2 – 7x + 2k = 0 (2)
Xác định k để một trong các nghiệm của phương trình (2) lớn gấp 2 lần một trong các nghiệm của phương trình (1).
Chủ đề 3: Hệ phương trình.
A - Hệ hai phương trình bậc nhất hai ẩn:
Dạng 1: Giải hệ phương trình cơ bản và đưa được về dạng cơ bản
Bài 1: Giải các hệ phương trình
Bài 2: Giải các hệ phương trình sau:
Dạng 2: Giải hệ bằng phương pháp đặt ẩn phụ
Giải các hệ phương trình sau
Dạng 3: Xác định giá trị của tham số để hệ có nghiệm thoả mãn điều kiện cho trước
Bài 1: 
a) Định m và n để hệ phương trình sau có nghiệm là (2 ; - 1).
b) Định a và b biết phương trình: ax2 - 2bx + 3 = 0 có hai nghiệm là x = 1 và x = -2.
Bài 2: Định m để 3 đường thẳng sau đồng quy:
a) 2x – y = m ;	 x = y = 2m ; 	mx – (m – 1)y = 2m – 1
b) mx + y = m2 + 1 ; (m + 2)x – (3m + 5)y = m – 5 ; (2 - m)x – 2y = - m2 + 2m – 2.
Bài 3: Cho hệ phương trình 
a) Giải hệ phương trình khi m = .
b) Giải và biện luận hệ theo m.
c) Xác định các giá tri nguyên của m để hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y > 0.
d) Với giá trị nguyên nào của m thì hệ có nghiệm (x ; y) với x, y là các số nguyên dương.
e) Định m để hệ có nghiệm duy nhất (x ; y) sao cho S = x2 – y2 đạt giá trị nhỏ nhất. (câu hỏi tương tự với S = xy).
f) Chứng minh rằng khi hệ có nghiệm duy nhất (x ; y) thì điểm M(x ; y) luôn nằm trên một đường thẳng cố định khi m nhận các giá trị khác nhau.
Bài 4: Cho hệ phương trình: 
a) Giải và biện luận hệ theo m.
b) Với các giá trị nguyên nào của m thì hệ có nghiệm duy nhất (x ; y) sao cho x > 0, y < 0.
c) Định m để hệ có nghiệm duy nhất (x ; y) mà P = x2 + y2 đạt giá trị nhỏ nhất.
d) Xác định m để hệ có nghiệm duy nhất (x ; y) thoả mãn x2 + 2y = 0. (Hoặc: sao cho M (x ; y) nằm trên parabol y = - 0,5x2).
e) Chứng minh rằng khi hệ có nghiệm duy nhất (x ; y) thì điểm D(x ; y) luôn luôn nằm trên một đường thẳng cố định khi m nhận các giá trị khác nhau.
Bài 5: Cho hệ phương trình: 
a) Giải hệ phương trình trên khi m = 2.
b) Tìm các số nguyên m để hệ có nghiệm duy nhất (x ; y) mà x > 0 và y < 0.
c) Tìm các số nguyên m để hệ có nghiệm duy nhất (x ; y) mà x, y là các số nguyên.
d) Tìm m để hệ có nghiệm duy nhất (x ; y) mà S = x – y đạt giá trị lớn nhất.
B - Một số hệ bậc hai đơn giản:
Dạng 1: Hệ đối xứng loại I
Ví dụ: Giải hệ phương trình 
Bài tập tương tự:
Giải các hệ phương trình sau:
Dạng 2: Hệ đối xứng loại II
Ví dụ: Giải hệ phương trình 
Bài tập tương tự:
Giải các hệ phương trình sau:
Dạng 3: Hệ bậc hai giải bằng phương pháp thế hoặc cộng đại số
Giải các hệ phương trình sau:
Chủ đề 4: Hàm số và đồ thị.
Dạng 1: Vẽ đồ thị hàm số
Bài 1: Vẽ đồ thị các hàm số sau:
a) y = 2x – 5 ; 	b) y = - 0,5x + 3
Bài 2: Vẽ đồ thị hàm số y = ax2 khi:
a) a = 2 ; 	b) a = - 1.
Dạng 2: Viết phương trình đường thẳng
Bìa 1: Viết phương trình đường thẳng (d) biết:
a) (d) đi qua A(1 ; 2) và B(- 2 ; - 5)
b) (d) đi qua M(3 ; 2) và song song với đường thẳng (D) : y = 2x – 1/5.
c) (d) đi qua N(1 ; - 5) và vuông góc với đường thẳng (d’): y = -1/2x + 3.
d) (d) đi qua D(1 ; 3) và tạo với chiều dương trục Ox một góc 300.
e) (d) đi qua E(0 ; 4) và đồng quy với hai đường thẳng 
f) (D): y = 2x – 3; (D’): y = 7 – 3x tại một điểm.
g) (d) đi qua K(6 ; - 4) và cách gốc O một khoảng bằng 12/5 (đơn vị dài).
Bài 2: Gọi (d) là đường thẳng y = (2k – 1)x + k – 2 với k là tham số.
Định k để (d) đi qua điểm (1 ; 6).
Định k để (d) song song với đường thẳng 2x + 3y – 5 = 0.
Định k để (d) vuông góc với đường thẳng x + 2y = 0.
Chứng minh rằng không có đường thẳng (d) nào đi qua điểm A(-1/2 ; 1).
Chứng minh rằng khi k thay đổi, đường thẳng (d) luôn đi qua một điểm cố định.
Dạng 3: Vị trí tương đối giữa đường thẳng và parabol
Bài 1: 
Biết đồ thị hàm số y = ax2 đi qua điểm (- 2 ; -1). Hãy tìm a và vẽ đồ thị (P) đó.
Gọi A và B là hai điểm lần lượt trên (P) có hoành độ lần lượt là 2 và - 4. Tìm toạ độ A và B từ đó suy ra phương trình đường thẳng AB.
Bài 2: Cho hàm số 
a) Khảo sát và vẽ đồ thị (P) của hàm số trên.
b) Lập phương trình đường thẳng (d) qua A(- 2; - 2) và tiếp xúc với (P).
Bài 3: 
Trong cùng hệ trục vuông góc, cho parabol (P): và đường thẳng (D): y = mx - 2m - 1.
a) Vẽ độ thị (P).
b) Tìm m sao cho (D) tiếp xúc với (P).
c) Chứng tỏ rằng (D) luôn đi qua một điểm cố định A thuộc (P).
Bài 4: Cho hàm số 
a) Vẽ đồ thị (P) của hàm số trên.
b) Trên (P) lấy hai điểm M và N lần lượt có hoành độ là - 2; 1. Viết phương trình đường thẳng MN.
c) Xác định hàm số y = ax + b biết rằng đồ thị (D) của nó song song với đường thẳng MN và chỉ cắt (P) tại một điểm.
Bài 5: 
Trong cùng hệ trục toạ độ, cho Parabol (P): y = ax2 (a ạ 0) và đường thẳng (D): y = kx + b.
1) Tìm k và b cho biết (D) đi qua hai điểm A(1; 0) và B(0; - 1).
2) Tìm a biết rằng (P) tiếp xúc với (D) vừa tìm được ở câu 1).
3)Vẽ (D) và (P) vừa tìm được ở câu 1) và câu 2).
4) Gọi (d) là đường thẳng đi qua điểm và có hệ số góc m
a) Viết phương trình của (d).
b) Chứng tỏ rằng qua điểm C có hai đường thẳng (d) tiếp xúc với (P) (ở câu 2) và vuông góc với nhau.
Chủ đề 5: Giải bài toán bằng cách lập phương trình, hệ phương trình.
Dạng 1: Chuyển động (trên đường bộ, trên đường sông có tính đến dòng nước chảy)
Bài 1: 
Một ôtô đi từ A đến B trong một thời gian nhất định. Nếu xe chạy với vận tốc 35 km/h thì đến chậm mất 2 giờ. Nếu xe chạy với vận tốc 50 km/h thì đến sớm hơn 1 giờ. Tính quãng đường AB và thời gian dự định đi lúc đầu.
Bài 2: 
Một người đi xe máy từ A đến B cách nhau 120 km với vận tốc dự định trước. Sau khi được quãng đường AB người đó tăng vận tốc thêm 10 km/h trên quãng đường còn lại. Tìm vận tốc dự định và thời gian xe lăn bánh trên đường, biết rằng người đó đến B sớm hơn dự định 24 phút.
Bài 3: 
Một canô xuôi từ bến sông A đến bến sông B với vận tốc 30 km/h, sau đó lại ngược từ B trở về A. Thời gian xuôi ít hơn thời gian đi ngược 1 giờ 20 phút. Tính khoảng cách giữa hai bến A và B. Biết rằng vận tốc dòng nước là 5 km/h và vận tốc riêng của canô lúc xuôi và lúc ngược bằng nhau.
Bài 4: 
Một canô xuôi một khúc sông dài 90 km rồi ngược về 36 km. Biết thời gian xuôi dòng sông nhiều hơn thời gian ngược dòng là 2 giờ và vận tốc khi xuôi dòng hơn vận tốc khi ngược dòng là 6 km/h. Hỏi vận tốc canô lúc xuôi và lúc ngược dòng.
Dạng 2: Toán làm chung – làn riêng (toán vòi nước)
Bài 1: 
Hai người thợ cùng làm chung một công việc trong 7 giờ 12 phút thì xong. Nếu người thứ nhất làm trong 5 giờ và người thứ hai làm trong 6 giờ thì cả hai người chỉ làm được công việc. Hỏi một người làm công việc đó trong mấy giờ thì xong?
Bài 2:
Nếu vòi A chảy 2 giờ và vòi B chảy trong 3 giờ thì được hồ. Nếu vòi A chảy trong 3 giờ và vòi B chảy trong 1 giờ 30 phút thì được hồ. Hỏi nếu chảy một mình mỗI vòi chảy trong bao lâu mới đầy hồ.
Bài 3: 
Hai vòi nước cùng chảy vào một bể thì sau 6 giờ đầy bể. Nếu mỗi vòi chảy một mình cho đầy bể thì vòi II cần nhiều thời gian hơn vòi I là 5 giờ. Tính thời gian mỗi vòi chảy một mình đầy bể?
Dạng 3: Toán liên quan đến tỉ lệ phần trăm.
Bài 1: 
Trong tháng giêng hai tổ sản xuất được 720 chi tiết máy. Trong tháng hai, tổ I vượt mức 15%, tổ II vượt mức 12% nên sản xuất được 819 chi tiết máy. Tính xem trong tháng giêng mỗi tổ sản xuất được bao nhiêu chi tiết máy?.
Bài 2: 
Năm ngoái tổng số dân của hai tỉnh A và B là 4 triệu người. Dân số tỉnh A năm nay tăng 1,2%, còn tỉnh B tăng 1,1%. Tổng số dân của cả hai tỉnh năm nay là 4 045 000 người. Tính số dân của mỗi tỉnh năm ngoái và năm nay?
Dạng 4: Toán có nội dung hình học.
Bài 1: 
Một khu vườn hình chữ nhật có chu vi là 280 m. Người ta làm lối đi xung quanh vườn (thuộc đất trong vườn) rộng 2 m. Tính kích thước của vườn, biết rằng đất còn lại trong vườn để trồng trọt là 4256 m2.
Bài 2: 
Cho một hình chữ nhật. Nếu tăng chiều dài lên 10 m, tăng chiều rộng lên 5 m thì diện tích tăng 500 m2. Nếu giảm chiều dài 15 m và giảm chiều rộng 9 m thì diện tích giảm 600 m2. Tính chiều dài, chiều rộng ban đầu.
Bài 3:
Cho một tam giác vuông. Nếu tăng các cạnh góc vuông lên 2 cm và 3 cm thì diện tích tam giác tăng 50 cm2. Nếu giảm cả hai cạnh đi 2 cm thì diện tích sẽ giảm đi 32 cm2. Tính hai cạnh góc vuông.
Dạng 5: Toán về tìm số.
Bài 1: 
Tìm một số tự nhiên có hai chữ số, tổng các chữ số bằng 11, nếu đổi chỗ hai chữ số hàng chục và hàng đơn vị cho nhau thì số đó tăng thêm 27 đơn vị.
Bài 2: 
Tìm một số có hai chữ số, biết rằng số đó gấp 7 lần chữ số hàng đơn vị của nó và nếu số cần tìm chia cho tổng các chữ số của nó thì được thương là 4 và số dư là 3.
Bài 3: 
Nếu tử số của một phân số được tăng gấp đôi và mẫu số thêm 8 thì giá trị của phân số bằng . Nếu tử số thêm 7 và mẫu số tăng gấp 3 thì giá trị phân số bằng . Tìm phân số đó.
Bài 4:
Nếu thêm 4 vào tử và mẫu của một phân số thì giá trị của phân số giảm 1. Nếu bớt 1 vào cả tử và mẫu, phân số tăng . Tìm phân số đó.
Chủ đề 6: Phương trình quy về phương trình bậc hai.
Dạng 1: Phương trình có ẩn số ở mẫu.
Giải các phương trình sau:
Dạng 2: Phương trình chứa căn thức.
Giải các phương trình sau:
Dạng 3: Phương trình chứa dấu giá trị tuyệt đối.
Giải các phương trình sau:
Dạng 4: Phương trình trùng phương.
Giải các phương trình sau:
a) 4x4 + 7x2 – 2 = 0 ;	b) x4 – 13x2 + 36 = 0;
c) 2x4 + 5x2 + 2 = 0 ;	d) (2x + 1)4 – 8(2x + 1)2 – 9 = 0.
Dạng 5: Phương trình bậc cao.
Giải các phương trình sau bằng cách đưa về dạng tích hoặc đặt ẩn phụ đưa về phương trình bậc hai:
Bài 1: 
a) 2x3 – 7x2 + 5x = 0 ; 	b) 2x3 – x2 – 6x + 3 = 0 ;
c) x4 + x3 – 2x2 – x + 1 = 0 ;	d) x4 = (2x2 – 4x + 1)2.
Bài 2:
 a) (x2 – 2x)2 – 2(x2 – 2x) – 3 = 0 	 c) (x2 + 4x + 2)2 +4x2 + 16x + 11 = 0
Bài 3:
6x5 – 29x4 + 27x3 + 27x2 – 29x +6 = 0
10x4 – 77x3 + 105x2 – 77x + 10 = 0
(x – 4,5)4 + (x – 5,5)4 = 1
(x2 – x +1)4 – 10x2(x2 – x + 1)2 + 9x4 = 0
Bài tập về nhà:
Giải các phương trình sau:
2.
a) x4 – 34x222 + 225 = 0	b) x4 – 7x2 – 144 = 0
c) 9x4 + 8x2 – 1 = 0	d) 9x4 – 4(9m2 + 4)x2 + 64m2 = 0
e) a2x4 – (m2a2 + b2)x2 + m2b2 = 0 (a ≠ 0)
3. 
a) (2x2 – 5x + 1)2 – (x2 – 5x + 6)2 = 0
b) (4x – 7)(x2 – 5x + 4)(2x2 – 7x + 3) = 0
c) (x3 – 4x2 + 5)2 = (x3 – 6x2 + 12x – 5)2
d) (x2 + x – 2)2 + (x – 1)4 = 0
e) (2x2 – x – 1)2 + (x2 – 3x + 2)2 = 0
4. 
a) x4 – 4x3 – 9(x2 – 4x) = 0	b) x4 – 6x3 + 9x2 – 100 = 0
c) x4 – 10x3 + 25x2 – 36 = 0	d) x4 – 25x2 + 60x – 36 = 0
5.
a) x3 – x2 – 4x + 4 = 0	b) 2x3 – 5x2 + 5x – 2 = 0
c) x3 – x2 + 2x – 8 = 0	d) x3 + 2x2 + 3x – 6 = 0
e) x3 – 2x2 – 4x – 3 = 0
6.
a) (x2 – x)2 – 8(x2 – x) + 12 = 0	b) (x4 + 4x2 + 4) – 4(x2 + 2) – 77 = 0
c) x2 – 4x – 10 - 3 = 0	d) 
e) 
7.
a) (x + 1)(x + 4)(x2 + 5x + 6) = 24 	b) (x + 2)2(x2 + 4x) = 5
c) 	d) 
8.
9. Định a để các phương trình sau có 4 nghiệm
a) x4 – 4x2 + a = 0 	b) 4y4 – 2y2 + 1 – 2a = 0
c) 2t4 – 2at2 + a2 – 4 = 0.
Phần II: Hình học
Chủ đề 1: Nhận biết hình, tìm điều kiện của một hình.
Bài 1:
Cho tam giác đều ABC nội tiếp đường tròn tâm O. D và E lần lượt là điểm chính giữa của các cung AB và AC. DE cắt AB ở I và cắt AC ở L.
a) Chứng minh DI = IL = LE.
b) Chứng minh tứ giác BCED là hình chữ nhật.
c) Chứng minh tứ giác ADOE là hình thoi và tính các góc của hình này.
Bài 2:
Cho tứ giác ABCD nội tiếp đường tròn có các đường chéo vuông góc với nhau tại I.
a) Chứng minh rằng nếu từ I ta hạ đường vuông góc xuống một cạnh của tứ giác thì đường vuông góc này qua trung điểm của cạnh đối diện của cạnh đó.
b) Gọi M, N, R, S là trung điểm của các cạnh của tứ giác đã cho. Chứng minh MNRS là hình chữ nhật.
c) Chứng 

File đính kèm:

  • docOn thi vao THPT theo chu de.doc
Đề thi liên quan