Đề kiểm tra Học Kỳ 2 năm học 2018-2019 môn Toán Lớp 10 - Sở GD&ĐT Quảng Bình (Có đáp án)

pdf4 trang | Chia sẻ: Mịch Hương | Ngày: 08/04/2025 | Lượt xem: 25 | Lượt tải: 0download
Bạn đang xem nội dung tài liệu Đề kiểm tra Học Kỳ 2 năm học 2018-2019 môn Toán Lớp 10 - Sở GD&ĐT Quảng Bình (Có đáp án), để tải tài liệu về máy bạn click vào nút DOWNLOAD ở trên
 SỞ GD&ĐT QUẢNG BÌNH ĐỀ KIỂM TRA HỌC KÌ II - NĂM HỌC 2018 - 2019 
 MÔN: TOÁN LỚP 10 THPT 
Họ tên HS:..................................................................... 
 Thời gian: 90 phút (không kể thời gian giao đề) 
Số báo danh:.............................................................. 
 Đề có 02 trang, gồm 16 câu 
 I. PHẦN TRẮC NGHIỆM (3,0 điểm). 
Câu 1: Độ lệch chuẩn của một dãy số liệu thống kê được tính là giá trị nào sau đây của dãy? 
 A. Bình phương của phương sai. B. Một nửa của phương sai. 
 C. Căn bậc hai của phương sai. D. Hai lần phương sai. 
Câu 2: Cho dãy số liệu thống kê: 1,2,3,4,5,6,7,8. Độ lệch chuẩn của dãy số liệu thống kê 
này(làm tròn đến 2 chữ số thập phân) là: 
 A. 2,30 B. 2,63 C. 27,56 D. 5,25 
Câu 3: Trên đường tròn lượng giác, gọi M là điểm chính giữa cung AB . Khẳng định nào 
sau đây sai? 
  π 
 A. sđ AM =+∈kk2π ,( ). B. sđ AM =+∈4500kk 360 ,( ). 
 4
 π 
 C. sđ AM = . D. sđ AM =+∈450 kk 2π ,( ). 
 4
 abc++
Câu 4: Cho tam giác ABC có độ dài các cạnh AB = c, AC = b, BC = a. Đặt: p = , 
 2
 S= pp( −−− a )( p b )( p c ) . Gọi r, R lần lượt là bán kính đường tròn nội, ngoại tiếp tam 
giác ABC. Khẳng định nào sau đây là sai? 
 abc 1 abc
 A. S = . B. S= pr . C. S= absin C . D. S = . 
 4r 2 4R
 5π
Câu 5: Trên đường tròn lượng giác cho cung α = , cung nào trong các cung sau đây 
 6
không có cùng điểm cuối với cung α ? 
 7π 17π 11π 19π
 A. − . B. . C. . D. − . 
 6 6 6 6
Câu 6: Cho góc x thoả 00 < x < 900. Trong các mệnh đề sau, mệnh đề nào sai: 
 A. sinx > 0. B. cosx 0. D. cotx > 0. 
Câu 7: Bất phương trình nào sau đây tương đương với bất phương trình x + 5 > 0? 
 A. x (x + 5) > 0. B.(x – 1)2(x + 5) > 0. C. x2(x + 5) > 0. D. x + 5 (x + 5) > 0. 
Câu 8: Tam giác ABC có AB = c, AC = b, BC = a. Khi đó cosB bằng biểu thức nào sau 
đây? 
 bca222+− acb222+−
 A. . B. 1− sin2 B . C. cos(A + C) . D. . 
 2bc 2ac
Câu 9: Tập nghiệm của bất phương trình x + x − 2 ≤ 2 + x − 2 là: 
 A. ∅ B. (–∞; 2) C.{2} D. [2; +∞) 
Câu 10: Phương trình tham số của đường thẳng x – y + 2 = 0 là: 
 xt= x = 2 xt=3 + xt=
 A.  . B.  . C.  . D.  . 
 yt=2 + yt= yt=1 + yt=3 −
 |1−−xx | 1
Câu 11: Tập nghiệm của bất phương trình > là: 
 33−−xx
 A. (−∞ ;1). B. (1;+∞ ) . C. (−∞ ;3) . D. (1; 3) . 
 1 Câu 12: Trong các đường thẳng sau đây, đường thẳng nào vuông góc với đường thẳng 
d: x + 2y – 4 = 0 và hợp với hai trục tọa độ thành một tam giác có diện tích bằng 1? 
 A. 2x + y + 2 = 0. B. 2x – y – 1 = 0. C. x – 2y + 2 = 0. D. 2x – y + 2 = 0. 
 II. PHẦN TỰ LUẬN (7,0 điểm). 
Câu 13 (2,0 điểm): Giải các bất phương trình sau: 
 a) 4x −≤ 57. 
 xx2 −−67
 b) <+21x . 
 x −1
Câu 14 (1,5 điểm): Cho bất phương trình: x22−(3 m + 1) x + 2 mm +< 0 . 
 a) Giải bất phương trình khi m = 1. 
 b) Tìm m để bất phương trình vô nghiệm. 
Câu 15 (2,5 điểm): Trên mặt phẳng toạ độ Oxy cho ba điểm A(3; -2), B(-2; 1); C(1; 3). 
 a) Viết phương trình tham số và phương trình tổng quát của đường thẳng BC. 
 b) Tìm toạ độ hình chiếu vuông góc của A lên đường thẳng BC. 
 8
Câu 16 (1,0 điểm): Chứng minh rằng: ( a+≥ b) 64a ba ( + b )2 với mọi ab,0≥ . 
 ....................Hết................. 
 2 KIỂM TRA HỌC KÌ II NĂM HỌC 2018-2019 
 HƯỚNG DẪN CHẤM 
 MÔN: TOÁN LỚP 10 THPT 
* Đáp án chỉ trình bày một lời giải cho mỗi câu, trong bài làm của thí sinh phần tự luận 
yêu cầu phải lập luận chặt chẽ, lôgic, đầy đủ, chi tiết, rõ ràng. 
* Trong mỗi câu nếu thí sinh giải sai ở bước giải trước thì cho điểm 0 đối với bước giải 
sau có liên quan. 
* Học sinh có lời giải khác với đáp án (nếu đúng) vẫn cho điểm tối đa tuỳ theo mức độ 
của từng câu. 
* Điểm bài kiểm tra là tổng các điểm thành phần. Nguyên tắc làm tròn điểm bài kiểm tra 
học kỳ theo Quy chế đánh giá, xếp loại học sinh. 
Phần I: Trắc nghiệm khách quan (3,0 điểm) 
Mỗi câu đúng cho 0,25 điểm. 
 Câu 1 2 3 4 5 6 7 8 9 10 11 12 
Đáp án C A D A C B D D C A A D 
Phần II: Tự luận (7,0 điểm) 
 Câu Nội dung Điểm 
 Giải các bất phương trình sau: 
 a) 4x −≤ 57. 
 2.0 
 xx2 −−67
 b) <+21x 
 x −1
  5
 x ≥
 4x −≥ 50  4
   ≤
 −≤ x 3
 4x 57 
 a) 4x −≤⇔ 57 ⇔  5 0.5 
 4x −< 50  x <
   4
  54−≤x 7 
   1
 x ≥−
  2
 1
 13 ⇔x ∈− ;3 0.5 
 2
 xx22−−67 xx++56
 b) 0 0.25 
 xx−−11
 2 x = −2
 Ta có: xx+5 +=⇔ 60  ; xx−=10 ⇔ = 1 0.25 
 x = −3
 Xét dấu vế trái: 
 x −∞ -3 -2 1 +∞ 
 xx2 ++56 + 0 - 0 + | + 0.25 
 x −1 
 - | - | - 0 + 
 VT - 0 + 0 - || + 
 Dựa vào bảng xét dấu ta có tập nghiệm bất phương trình là : 
 S =( − 3; − 2) ∪ (1; +∞ ) 0.25 Cho bất phương trình: x22−(3 m + 1) x + 2 mm +< 0 . 
 a) Giải bất phương trình khi m = 1. 1,5 
 b) Tìm m để bất phương trình vô nghiệm. 
 a) Khi m = 1, bất phương trình trở thành: xx2 −4 +< 30 0.25 
 2 −+
 Tam thức xx43 có hai nghiệm x = 1 và x = 3, hệ số a = 1 > 0.25 
14 0 
 Do đó: xx2 −4 +<⇔∈ 3 0 x (1; 3) 0.25 
 b) Bất phương trình đã cho vô nghiệm khi và chỉ khi 
 0.25 
 x22−(3 m + 1) x + 2 mm +≥ 0 với ∀∈x 
 ⇔∆=(3mm + 1)22 − 4(2 m + ) ≤ 0 0.25 
 ⇔mm2 +2 +≤ 10 ⇔ m =− 1 0.25 
 Trên mặt phẳng toạ độ Oxy cho ba điểm A(3; -2), B(-2; 1); C(1; 3). 
 a) Viết phương trình tham số và phương trình tổng quát của đường 
 2.5 
 thẳng BC. 
 b) Tìm toạ độ hình chiếu vuông góc của A lên đường thẳng BC. 
  
 a) Đường thẳng BC đi qua B(-2; 1) nhận vectơ BC = (3; 2) làm một 
 0.25 
 vectơ chỉ phương nên phương trình tham số của BC là: 
 xt=−+23
  0.5 
 yt=12 +
  
 Vì BC = (3; 2) là vectơ chỉ phương của BC nên n =(2; − 3) là một 
 0.25 
 vectơ pháp tuyến của BC. Do đó phương trình tổng quát của BC là: 
 2( x+ 2) -3( y -1) =⇔ 0 2 xy − 3 += 7 0 0.5 
  
15 b) Đường thẳng d đi qua A(3; -2) vuông góc với BC nhận BC = (3; 2) 
 làm một vectơ pháp tuyến, phương trình tổng quát của d là: 0.25 
 3(x− 3) + 2( y + 2) =⇔ 0 3 xy + 2 −= 5 0 
 Gọi H là hình chiếu vuông góc của A lên BC thì H là giao điểm của d 
 và BC. Do đó, toạ độ H là nghiệm của hệ: 
 2xy− 3 += 70 0.25 
  
 3xy+ 2 −= 50
 1 31
 Giải hệ ta được: xy=; = 0.25 
 13 13
 Vậy: toạ độ hình chiếu vuông góc của A lên đường thẳng BC là: 
 1 31 0.25 
 H ; 
 13 13
 8
 Chứng minh rằng: ( a+≥ b) 64a ba ( + b )2 với mọi ab,0≥ 1.0 
 4
 82
 Ta có: ( ab+=+) ( ab) 0.25 
16 
 4 4
 =(a ++ b) 2 ab ≥ 2 ( a + b )2 ab 0.5 
 
 =+=+2()264()4a b 22 ab ab a b 2 0.25 

File đính kèm:

  • pdfde_kiem_tra_hoc_ky_2_nam_hoc_2018_2019_mon_toan_lop_10_so_gd.pdf